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COMPUTERIZED INSPECTION OF REAL SURFACES AND MINIMIZATION OF THEIR DEVIATIONS
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and
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SUMMARY

A method is developed for the minimization of gear tooth surface deviations
between theoretical and real surfaces to improve the precision of surface manufac-
ture. Coordinate measurement machinery is used to determine a grid of surface
coorcdinates. Theoretical calculations are made for the grid points. A least-square
method is used to minimize the deviations between real and theoretical surfaces by
altering the manufacturing machine-tool settings. An example is given for a hypoid
gear.

INTRODUCTION

The Gleason Works were pioneers in the application of coordinate measurements to
improve the precision manufacturing of hypoid and spiral bevel gears (ref. 1). 1In
aerospace applications, duplication of flight-qualified master gears is very impor-
tant. and coordinate measurement has now become part of the normal production pro-
cess. Methods to enhance and extend the use of this machinery can be very valuable
to aerospace gear manufacturers.

The approach developed in this paper enables one do determine deviations of a
real surface from the known theoretical surface. This is accomplished by using
coordinate measurements and minimizing the deviations to correct the previously
applied machine-tool settings. The surface deviations are represented in the direc-
tion of the normal to the theoretical surface. The coordinate measurementsg are
performed by a machine with 4 or 5 degrees of freedom. 1In the case of 4 degrees of
freedom, the probe performs three translational motions (fig. 1); the fourth motion,
rotation, is performed by turning the table with the workpiece. The axis of
rotational motion coincides with the axis of the workpiece. In the case of a
5-degree-of-freedom machine, the fifth degree of freedom is used to provide the probe
deflections in the direction of the normal to the theoretical surface. The probe is
provided with a changeable spherical surface whose diameter can be chosen from a wide
range.

The motions of the probe and the workpiece for coordinate measurements are com-
puter controlled and for this purpose a grid, the set of points on the surface to be
measured, must be chosen. There is a reference point, one point on the grid, that is
necessary for the initial installments of the probe. There are two orientations of
the probe installment that are applied for measurements of a gear (fig. 1(a)) and a
pinion (fig. 1(b)), depending on the angle { .ue plli. il cone.
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Figure 1.—Surface measurement orientation for (a) gear
and (b) pirion.

The mathematical aspects of coordinate measurements will now be described
{(ref. 2): First, it is necessary to derive the equations for the theoretical sur-
face. 1In many cases, this surface can be derived as the envelope to the family of
generating surfaces, namely the tool surfaces. Next, the results of coordinate
meagurements must be transformed into deviations of the real surface represented in
the direction of the surface normal. Here, the surface variations are represented in
terms of the corrections to the machine-tool settings. The surface deviations
obtained from coordinate measurements and the surface variations determined by the
corrections of machine-tool settings can be represented by an overdetermined system
of linear equations. The number k of these equations is equal to the number of
grid points, and the number of unknowns m is equal to the number of corrections of
machine~tool settings (m << k). The optimal solution to such a system of linear
equations enables one to determine the sought-for corrections of machine-tool
settings.

EQUATIONS OF THEORETICAL TOOTH SURFACE Et

Considering that the theoretical surface can be determined directly, we repre-
sent it in coordinate system S, in two~parametric form as

r.(u,8), n (u,6) (1)

where r and nt are the position vector and unit normal to the surface, respec-
tively, and (u,f) are the Gaussian coordinates (surface coordinates).
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For the case when surface Zc is the envelope to the family of generating
surface ZC, we represent in S surface Xt and the unit normal n_ to Zt as
(ref. 3)

|
o)

(2)

a}
|

[ [Mtc]rc(uc’ec) ’f(uc'ec’¢)

(3)

|
(@]

n, = (L. In(u_,0_),f(u_6_,¢)

where (uC,GC) are the Gaussian coordinates of the generating surface Ec, and ¢ is
the generalized parameter of motion in the process for gereration. The equation of
meshing is

(c) V(CT—)

where N is the normal to [ , and is the relative motion for a point of
contact of XC and L . Matrices (M., and [L 1, . describe the coordinate
transformation from SC to SC for a position vector and surface normal, respec-
tively. Position vectors in three-dimensional space are represented with homogenenus

coordinates.

COORDINATE SYSTEMS USED FOR COORDINATE MEASUREMENTS

Coordinate systems Sm and St are rigidly connected to the coordinate measur-
ing machine (CMM) and the workpiece being measured, respectively (fig. 2). The
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Fig're 3. —Measurement grid on tooth surface.

backface cf the gear is installed flush witih the base plane of CMM. The distance 1
between the origins Om and o, is assumed to be known, but the parameter § of

orientation must be determined (see the following section). The coordinate transfor-
mation from S_ to Sm is represented by the matrix equation
r, = (M ]r, (5)

m

MEASUREMENT GRID AND ESTABLISHMENT OF THE REFERENCE POINT

The grid is a set of points on L chosen as points of contact between the
probe and Xt (fig. 3). Fixing the value of z, for the point of the grid and the
value of, say, Y, (or xt), we can obtain the following equations:

y.(u;,6;,) =h,, z,(u;,80,) =1, (L=1,...,k) (6)
where k is the number of grid points.
We consider hi and li as given and solve equations (6) for (ui,ei). Then we

can determine the position vectors and the unit normals for k points of the grid

using the equations
(1) (7)

-

= (%, (v, 00y, (4, 02,0017, (i=1,...,k)

(1) (8)

n, = (n(u;,0)n, (u,8)n, (u,.600)), (L=1,...,k)

The position vector for the center of the probe, if the deviations are zero, is
represented by




W (i) _
= + .. (9)

€ t v (1 =1,...,k)
where p is the radius of the probe sphere.
The reference point
te) (o) plo) (o) plo) (o), . T 10
ro o= (x (u?,8%)y w80z (u'7)] (10)

is usually chosen as the mean point of the grid.

The center of the probe that corresponds to the reference point on Et is
determined from equation (9) as
(o)

(o) (o) (e) o (o) (o) T
R, =[x .(u”,0)y (u,0%)z,(u",0))

(11)

{0)

where (u‘®,0'°’) are known values.

The coordinates of the reference center of the probe are represented in coordi-
nate system S_ of the measuring machine by the matrix equation

(@) (o) {12)
R~ = (M (0)IR
Eguation (12) yields
(o) (o)
Xm = xm (5,1.](0),9(0))
{o) (o) { | (13)
Yn =ym (5ru(0)190))
(o) (o)
zmO = zmO (5,u(°),9(°))
. X (o) (o) (o)
Three equations (13) contain four unknowns: 6, Xooe ¥, o2, - To solve these equa-

tions, we may consider that one of the coordinates of the reference point of the

probe center, say, y;O), may be chosen equal to zero. This is accomplished by
requiring the reference point to lie in the X, - 2, plane. The orientation of
angle 0 1is now established to satisfy this requirement, and all measurements are
referenced from this location. Then equation system (13) allows one to determine

( (o) (o) (o)

=3} (9)
8, X and z, (ref. 2). Coordinates X ¥, = o, z, are necessary for the

initial installment of the center of the probe.




MEASUREMENT OF THE DEVIATIONS OF THE REAL SURFACE

The deviations of the real surface are caused by manufacturing errors, heat
treatment, etc. Vector positions of the center of the probe for the theoretical
surface and the reai surface can be represented as [ollouws:

o)
]

r (u,8) +pn_(u,0) (14)

R =r_(u,68) +An_(u,8) (15)

where r and n_are the position vector and the unit normal to the theoretical
surface and are represented in coordinate system Sm of the measuring machine; A
determines the real location of the probe center and is considered along the normal

*

to the theoretical surface; R and R represent in S the position vector of the
probe center for the theoretical and real surfaces, respectively. Equations (14)

and (15) yield

R;—Rm= (A - pyn_ = Ann_ (16)

and

An (17)

I
x
|
o]
2

*
The position vector R is determined by coordinate measurements for points of the
grid. Equation (17) determines numerically the function

An, = An (u,,0)) (i =1,...,k) (18)

that represents the deviations of the real surface for each point of the grid.

MACHINE TOOL SETTINGS TO MINIMIZE DEVIATIONS

The procedure used to minimize the deviations can be represented in two stages:
(1) determination of variations of theoretical surface caused by changes of applied
machine-tool settings, and (2) minimization of deviations of real surface by appro-
priate correction of machine-tool settings. '

We consider that the theoretical surface is represented in St as

rt=rt(u,9,dj) (j =1,...,m) (19)

where parameters d] are the machine-tool settings. The surface variation is
represented by

s arté Or, 50 m arté (20}
= __éa.
TR i RS 8a, )




We multiply both sides of equation (20) by the surface unit normal n, and take into
account that art/ae - = art/au - n_=0, since art/69 and art/au lie in the
plane that is tangent to the surface. Then we obtain

m

© | Or
br, + n_= 2: ng- ntédj= E:aédj (21)

j=1 3 j=1

We can now consider a syscem of k linear equations in m unknowns (m << k) of the
following structure:

a116d1 + al"ad” + - almadm = bl

................. e (22)

a,6d, +a,6d, +... +a _6d =b,
Here

*
- = (23)
by =fn; = (R, -R;) - ny

where i designates the number of grid points; asj (s =1,...,k; 3 =1,...,m)
represents the dot product of partial derivatives art/ad, and unit normal n_. The
system ({22) of linear equations is overdetermined since m << k. The essence of the
procedure for miaimization of deviations is determining unknowns 6d, (3 =1,...,m)

that will minimize the difference between the left and right sides of equations (22).
The soiution employed the least-square method. The subroutine DLSQRR of IMSL MATH/
LIBRARY (ref. 4) was used to computerize the procedure.

APPLICATION OF METHOD TO THE INSPECTION OF FORMATE HYPOID GEAR

Each tooth side of a formate face-hobbed gear is generated by a cone, and the
gear tooth surface is the surface of the generating cone. Two cones that are shown
in figure 4(a) represent both sides of the gear space. The following equations
represent in coordinate system Sc gear surfaces for both sides and the unit normal
to such surfaces (fig. 4(b)}:

( -S,Cos Q.
(r - s.sin @ )sin 6 (24)

(r - s;sin a;)cos 6,

1
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sin a.

n = |- Cos @,sin 83 (25)

<

- cos a,cos 0,

where, r is the position vector and n_ the unit normal; r is the cutter tip
radius; &_ is the cutter blade angle (a; > 0 for the concave side and a < 0 for
the convex side).

Figure S5 shows the installment of the generating cone on the cutting machine.
Coordinate systems S and S  are rigidly connected to the cutting machine and the
gear being generated, respectively. Systems SC, So, and St are rigidly connected
to each other since the gear is formate cut. To represent in S the theoretical
gear tooth surface L  and the unit normal to [_, we use the following matrix

equations:

rt(sG,GG,dj) (M, 1r (s, 0, (26)

n (s.6.4d,) = (L n_ (s, 0, (27)

o]
where

[M'.c:] = [Mti;‘] [M

cos 7, 0 -sin Tu 0 1 00 O
0o 1 0 o |6 10 -V, (28)
siny 0 cos 7y, -Bx [0 O 1 H,

0 0 0 1 000 1

The surface Gaussian coordinates are s and 9G, and dj(7m, \Y
the machine-~tool settings.

, H, and AXm) are

2 2

The numerical example presented in this paper is based on the experiment that
has been performed at the Dana Corporation (Fort Wayne, IN, U.S.A.). The initial
deviations An for each side of the real tooth surface have been obtained by
measurements on a coordinate measuring machine (fig. 6;. The grid for the meas-
urement is formed by nine sections along the tooth length, each section having five
points. The number of grid points k is therefore 45, and the reference point is at
the middle of the grid, i.e., the third point of the fifth section. 1n the measure-

. (o) . .
ment, the coordinate Yo of the reference point is chosen to be zero and the
alignment angle & is determined from solving eguation system (13).

The minimization of deviations was performed in accordance with the algorithm
described in MACHINE TOOL SETINGS TO MINIMIZE DEVIATIONS, and the results are
illustrated in figure 7 and table T.
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Frgure 7 - -Minimized deviations after corrections made to machine-tool settings
TABLE I. - RESULTS OF MINIMIZATION
{Pressure angle, a_ = 21.25°%; cutter diameters = 9 in.;
point width of cutters = 0.08 in.)
Machine-tool Machine-tool setting parameters
settings
V., H, o Ax ,
- < w i
mm mm rad mm
Initial 103.252550 27.466600 1.059816 0.009677
Corrected 103.25220 27.21603 1.06437 -0.53343
CONCLUSION

A general approach for a computerized determination of deviations of a real sur-
face from the theoretical one based on coordinate measurements has been proposed. An
algorithm for computerized minimization of deviations by corrections of initially
appiied machine-tool settings has been developed. The approach is illustrated with

the example of the toocth surface of a hypoid formate gear.
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